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a b s t r a c t

An algebraic variational multiscale–multigrid method is proposed for large-eddy simula-
tion of turbulent variable-density flow at low Mach number. Scale-separating operators
generated by level-transfer operators from plain aggregation algebraic multigrid methods
enable the application of modeling terms to selected scale groups (here, the smaller of the
resolved scales) in a purely algebraic way. Thus, for scale separation, no additional discret-
ization besides the basic one is required, in contrast to earlier approaches based on geo-
metric multigrid methods. The proposed method is thoroughly validated via three
numerical test cases of increasing complexity: a Rayleigh–Taylor instability, turbulent
channel flow with a heated and a cooled wall, and turbulent flow past a backward-facing
step with heating. Results obtained with the algebraic variational multiscale–multigrid
method are compared to results obtained with residual-based variational multiscale meth-
ods as well as reference results from direct numerical simulation, experiments and LES
published elsewhere. Particularly, mean and various second-order velocity and tempera-
ture results obtained for turbulent channel flow with a heated and a cooled wall indicate
the higher prediction quality achievable when adding a small-scale subgrid-viscosity term
within the algebraic multigrid framework instead of residual-based terms accounting for
the subgrid-scale part of the non-linear convective term.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Large-eddy simulation (LES) of turbulent flow aims at resolving the larger flow structures and modeling the effect of the
smaller ones. The variational multiscale approach to LES (VMLES) as originally proposed in [1] and later addressed, e.g., in [2]
further separates the resolved scales into larger and smaller ones; see, e.g., [3] for a review and several references therein.
The other distinguishing feature of VMLES compared to the traditional LES approach is to be found in using variational pro-
jection instead of filtering for scale separation. The consideration of three scale groups (i.e., large resolved, small resolved,
and unresolved scales) was already used before in the context of the dynamic modeling procedure proposed in [4]. It is based
on a scale-similarity hypothesis (with respect to smaller resolved and unresolved scales) earlier exploited in the scale-sim-
ilarity model [5].

LES has successfully been applied to both incompressible (see, e.g., [6]) and compressible (see, e.g., [7]) turbulent flow.
More rarely, applications of LES to turbulent variable-density flow at low Mach number are encountered in literature. This
. All rights reserved.

arch Group ‘‘Computational Multiscale Methods for Turbulent Combustion”, Technische Universität
many. Tel.: +49 89 28915245; fax: +49 89 28915301.
Gravemeier), wall@lnm.mw.tum.de (W.A. Wall).

http://dx.doi.org/10.1016/j.jcp.2010.04.036
mailto:vgravem@lnm.mw.tum.de
mailto:wall@lnm.mw.tum.de
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


6048 V. Gravemeier, W.A. Wall / Journal of Computational Physics 229 (2010) 6047–6070
is despite the importance of the problems mathematically described by this set of equations. In particular, problems of com-
bustion are usually mathematically described by a variable-density formulation of the Navier–Stokes equations for low-
speed flows, see, e.g., [8,9]. A rigorous derivation of the equation system at low Mach number with a view on combustion
problems can be found, e.g., in [10]. Methods for LES of reactive and/or non-reactive turbulent low-Mach-number flow
are proposed, for instance, based on finite-volume approaches in [11–15] and based on a finite-difference approach in
[16]. In most studies, the version of the dynamic Smagorinsky model in [17], which extended the original proposal in [4]
for incompressible flow to the compressible case and scalar transport, is used as subgrid-scale model. For the scalar transport
equation, a subgrid diffusivity is used which is defined by the ratio of the subgrid viscosity used in the momentum equation
and a turbulent Prandtl number as earlier proposed by Erlebacher et al. see, e.g., [18]. An overview on traditional subgrid-
scale models for turbulent compressible flows can also be found in [19].

All of the aforementioned LES studies were used within finite-volume- or finite-difference-based computational environ-
ments. Finite element methods (FEM) for non-reactive low Mach number flow using inf-sup stable elements are described,
e.g., in [20–22]. Residual-based variational multiscale methods or stabilized FEM were recently proposed for such problems
in [23,24]. Stabilized FEM for reactive flow had been addressed before by Hauke and Valiño (see [25]), by Shadid and various
co-workers at Sandia National Laboratories (see, e.g., [26], and references therein) as well as by Braack and co-workers (see,
e.g., [27], and references therein). However, all aforementioned publications merely addressed laminar low-Mach-number
flow situations. In particular, to the best of our knowledge, there have not yet been any studies on FEM for (non-reactive)
variable-density turbulent flows at low Mach number published.

In a predecessor study to the present one, [28], we developed a residual-based variational multiscale method for low-
Mach number flow suitable for simulating laminar via transitional to turbulent flow regimes. That approach extends the
respective method proposed in [29] for turbulent incompressible flow to the low-Mach number case and is based on the gen-
eral framework of the variational multiscale method (see, e.g., [30]). It has similarities with the methods used in [23,24].
However, we already observed considerably improved results in the context of turbulent incompressible flow when includ-
ing a small-scale subgrid-viscosity model in the sense of a VMLES. The present work will show that such an improvement is
also achievable for variable-density flow by developing a formulation which features such a small-scale subgrid-viscosity
model in the sense of a VMLES. For a method to be used for a VMLES, the crucial aspect is the way large and small resolved
scales are separated.

The framework of an algebraic variational multiscale–multigrid method (AVM3) was originally proposed in [31] and ap-
plied to convection-dominated convection–diffusion problems. It was further developed and extended for application to tur-
bulent flow in the form of LES in [32]. The scale separation is based on level-transfer operators arising in plain aggregation
algebraic multigrid (PA-AMG); see, e.g., [33]. Though conceptually different, PA-AMG is closely related to volume-agglom-
eration multigrid methods (see, e.g., [34,35]), which were preferably developed for finite-volume discretizations of hyper-
bolic problems. A scale separation inspired by a volume-agglomeration method as proposed in [34] was used in [36]
within a VMLES. Geometric multigrid approaches to LES had already been proposed in [37] and later in [38]; see also the
recent review in [39]. Those methods were not derived using the framework of the VMLES. A geometric multigrid approach
to VMLES was later developed in [40]. Compared to those geometric multigrid procedures, the present algebraic multigrid
method obviates the often challenging generation of additional meshes besides the basic one.

The present study proposes the AVM3 for LES of turbulent variable-density flow at low Mach number. The study is or-
ganized as follows. In Section 2, the variable-density equation system at low Mach number in two alternative formulations
is given. Afterwards, a residual-based variational multiscale formulation is derived in Section 3. This section serves two
purposes. On the one hand, the reader is familiarized with the method the AVM3 is compared to. On the other hand, some
of the terms introduced in the residual-based variational multiscale formulation are also employed for the AVM3, which is
then provided in Section 5, after a brief presentation of the time-integration and solution procedures in Section 4. The
AVM3 is then validated for three numerical examples, a Rayleigh–Taylor instability, turbulent channel flow with a heated
and a cooled wall and turbulent flow past a backward-facing step with heating, in Section 6. Results obtained with the
AVM3 are compared to results obtained with residual-based variational multiscale methods as well as reference results
from direct numerical simulation (DNS), experiments and LES published elsewhere. Conclusions from this study are drawn
in Section 7.

2. Two formulations of the variable-density equations at low Mach number

2.1. Temperature formulation

Conservation equations for mass, momentum and energy in the domain X are given in convective form as
@q
@t
þr � quð Þ ¼ 0; ð1Þ

q
@u
@t
þ qu � ruþrphyd �r � 2le0 uð Þð Þ ¼ qg; ð2Þ

q
@T
@t
þ qu � rT �r � k

cp
rT

� �
¼ 1

cp

dpthe

dt
þ Q

� �
; ð3Þ
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where q denotes the density, u is the velocity, phyd is the hydrodynamic pressure, l is the viscosity, e0ðuÞ ¼ eðuÞ � 1
3 ðr � uÞI,

with the rate-of-deformation tensor eðuÞ ¼ 1
2 ðruþ ðruTÞÞ; I is the identity tensor, g is the gravity force vector, T is the tem-

perature, cp is the specific heat capacity at constant pressure (assumed constant), k the thermal conductivity, pthe is the ther-
modynamic pressure and Q is a potential heat source. Properties l and k are assumed to vary with T according to
Sutherland’s law:
l ¼ T
Tref

� �3
2 Tref þ S

T þ S

� �
lref ; k ¼ cp

Pr
l;
using a reference temperature Tref, a reference viscosity lref, the Sutherland temperature S, and the Prandtl number Pr ¼ cpl
k .

Note that energy conservation (3) is expressed in terms of temperature. Additionally, the equation of state for an ideal gas,
q ¼ pthe

RT
ð4Þ
is assumed based on the gas constant R. Using (4), the mass-conservation Eq. (1) may be reformulated as
r � u ¼ 1
T

@T
@t
þ u � rT

� �
� 1

pthe

dpthe

dt
: ð5Þ
As demonstrated in [28], by way of adding specific subgrid-scale terms, momentum–conservation properties may be
achieved even when starting from a convective form. The evidence given in [28] used the proof provided in [41] for the
incompressible Navier–Stokes equations as the starting point and further developed it for the present variable-density Na-
vier–Stokes equations.

Initial conditions are prescribed for u and T:
uðx; t ¼ 0Þ ¼ u0ðxÞ; Tðx; t ¼ 0Þ ¼ T0ðxÞ:
Dirichlet and Neumann boundary conditions for (2),
u ¼ uD on CD;u;

�phydIþ 2le0ðuÞ
� �

� n ¼ hu on CN;u
and for (3),
T ¼ TD on CD;T;

k
cp
rT � n ¼ hT on CN;T;
are also prescribed. It is assumed that CD \CN = ;, CD [CN = C for each equation, and n denotes the outer unit normal on
the boundary.

For two of the numerical examples considered below, turbulent channel flow and turbulent flow past a backward-facing
step, two different situations need to be distinguished with respect to determining the thermodynamic pressure. On the one
hand, the configuration of the backward-facing step represents an open system due to the Neumann outflow boundary (i.e.,
CN,u – £), which determines the (constant) thermodynamic pressure in this case. On the other hand, the channel is a closed
system (i.e., CN,u = £). The total mass remains constant over time in the channel domain. Thus, pthe may be obtained at each
time subject to an integral form of (4),
pthe ¼ R

R
X qdXR
X

1
T dX

¼ R

R
X q0dXR
X

1
T dX

¼ RM0R
X

1
T dX

;

where M0 denotes the initial total mass in X.

2.2. Mixture-fraction formulation

As an alternative equation system replacing (3)–(5), a mixture-fraction formulation will be considered for the first numer-
ical example below, as was also done in [16]. Mixture fraction is an important value frequently used in non-premixed com-
bustion; see, e.g., [8,9] for details. Eq. (3) is replaced by
q
@Z
@t
þ qu � rZ �r � qDZrZð Þ ¼ 0; ð6Þ
where Z denotes the mixture fraction and DZ a (kinematic) diffusivity. Furthermore, an equation of state for two miscible
fluids,
q ¼ 1
aZ þ b

; ð7Þ
as used in [16] is defined. For the present formulation, using (7), the mass-conservation Eq. (1) may be reformulated as
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r � u ¼ aq
@Z
@t
þ u � rZ

� �
: ð8Þ
However, in order not to unneccessarily elongate the presentation in the upcoming sections, only the first alternative using
Eqs. (3)–(5) will be taken into account. The derivation of the alternative formulations is straightforward.

3. Residual-based variational multiscale formulation

To obtain a variational formulation of the variable-density equations at low Mach number, appropriate solution function
spaces Sfp;u;Tg for phyd,u and T as well as weighting function spaces Vfp;u;Tg for the respective weighting functions q, v and w
are assumed. The variational formulation is given as follows: find phyd 2 Sp;u 2 Su and T 2 ST such that
q;r � uð Þ ¼ q;
1
T

@T
@t
þ u � rT

� �
� 1

pthe

dpthe

dt

� �
8q 2 Vp; ð9Þ

v;q
@u
@t

� �
þ v;qu � ruð Þ � r � v;phyd

� �
þ e vð Þ;2le0 uð Þð Þ ¼ v;qgð Þ þ v;huð ÞCN;u

8v 2 Vu; ð10Þ

w;q
@T
@t

� �
þ w;qu � rTð Þ þ rw;

k
cp
rT

� �
¼ w;

1
cp

dpthe

dt
þ Q

� �� �
þ w;hTð ÞCN;T

8w 2 VT ; ð11Þ
where (�, �) = (�, �)X and ð�; �ÞCN
denote the usual L2-inner product on X and CN, respectively.

A variational projection for separating resolved and unresolved scales within an FEM is assumed here. Hence, hydrody-
namic pressure, velocity and temperature fields are decomposed via variational projection into resolved and unresolved (or
subgrid-scale) parts as
phyd ¼ ph
hyd þ p̂hyd; u ¼ uh þ û; T ¼ Th þ bT ; ð12Þ
where h denotes the characteristic length scale of the discretization. The subgrid-scale parts of hydrodynamic pressure,
velocity and temperature field are approximated in an elementwise manner based on the resolved-scale parts. Hence, in
each element, the subgrid-scale parts are given as
p̂hyd ¼ �sCR
h
C; û ¼ �sMRh

M;
bT ¼ �sER

h
E; ð13Þ
using respective stabilization parameters s, which will be defined below. The discrete residuals of mass, momentum and en-
ergy conservation read
Rh
C ¼ r � uh � 1

Th

@Th

@t
þ uh � rTh

 !
þ 1

ph
the

dph
the

dt
;

Rh
M ¼ qh @uh

@t
þ qhuh � ruh þrph

hyd �r � 2lhe0 uh
� �� �

� qhg;

Rh
E ¼ qh @Th

@t
þ qhuh � rTh �r � kh

cp
rTh

 !
� 1

cp

dph
the

dt
þ Q

" #
:

The residual-based variational multiscale FE formulation is obtained by introducing decomposition (12) and approxima-
tion (13) into the variational formulation (9)–(11) and proceeding as described in [28]: find ph

hyd 2 Sh
p;u

h 2 Sh
u and Th 2 Sh

T

such that
qh;r � uh
� �

þ rqh; sMRh
M

� �
¼ qh;

1

Th

@Th

@t
þ uh � rTh

 !
� 1

ph
the

dph
the

dt

 !
8qh 2 Vh

p; ð14Þ

vh;qh @uh

@t

� �
þ vh;qhuh � ruh
� �

� r � vh;ph
hyd

� 	
þ e vh

� �
;2lhe0 uh

� �� �
þ r � vh; sCR

h
C

� �
þ qhuh � rvh; sMRh

M

� �
� vh;qhsMRh

M � ruh
� �

� qhsMRh
M � rvh; sMRh

M

� �
¼ vh;qhg
� �

þ vh;hu
� �

CN;u
8vh 2 Vh

u; ð15Þ

wh;qh @Th

@t

 !
þ wh;qhuh � rTh
� 	

þ rwh;
kh

cp
rTh

 !
þ qhuh � rwh; sER

h
E

� �
� wh;qhsMRh

M � rTh
� 	

� qhsMRh
M � rwh; sER

h
E

� �
¼ wh;

1
cp

dph
the

dt
þ Q

" # !
þ wh; hT
� �

CN;T
8wh 2 Vh

T ð16Þ
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subject to the (discrete) algebraic relations
qh ¼ ph
the

RTh
; lh ¼ Th

Tref

 !3
2 Tref þ S

Th þ S

� �
lref ; kh ¼ cp

Pr
lh: ð17Þ
The thermodynamic pressure ph
the may be a function of Th via
ph
the ¼

RM0R
X

1
Th dX

: ð18Þ
A Pressure-Stabilizing Petrov–Galerkin (PSPG) term appears in (14), and a grad-div term in (15) (last terms on the left-hand
side of (14) and in the first line of (15), respectively). These two subgrid-scale terms will be kept also for the AVM3 described
below, since they are not related to a convective term as all other subgrid-scale terms described in the following. The terms
in the second line of (15) are, in this order, a Streamline Upwind Petrov–Galerkin (SUPG, see, e.g., [42]), a cross-stress and a
Reynolds-stress term, all of them being in convective form. Analogously, the terms in the second line of (16) may be referred
to. All these subgrid-scale terms related to convective terms will be replaced in the context of the AVM3.

As in [28], the stabilization parameters sM and sC proposed for incompressible flow in [29] are adopted for the present
variable-density equation system:
sM ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qh

Dt

� 	2
þ quð Þh � G quð Þh þ CI lhð Þ2G : G

r ; ð19Þ

sC ¼
1

sMg � g ;
where
Gij ¼
X3

k¼1

@nk

@xi

@nk

@xj
; gi ¼

X3

j¼1

@nj

@xi
;

utilize the coordinate system n of the element parent domain; see, e.g., [43] for elaboration. The time-step length of the tem-
poral discretization of the problem formulation is denoted by Dt, and CI is a positive constant independent of the character-
istic element length h. Adopting (19) for the energy-conservation equation yields
sE ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qh

Dt

� 	2
þ quð Þh � G quð Þh þ CI

kh

cp

� 	2
G : G

r :
4. Generalized-a time integration and solution procedure

In principle, any time-integration scheme may be used in the present context. However, our preference is on the general-
ized-a scheme, which was originally proposed for the compressible formulation of the Navier–Stokes equations in [44], in a
form we already used for incompressible flow problems in [45]. In this section, the application is demonstrated for the (sim-
pler) case of the energy-conservation equation, for reasons of brevity. The matrix formulation of (16) using the generalized-a
scheme is given as
M _Tnþam þ Cnþaf þ Cnþaf
VM þ D

� �
Tnþaf ¼ fnþaf

E ;
where M;Cnþaf ¼ CðUnþaf Þ;Cnþaf
VM ¼ CVMðUnþaf Þ and D denote the matrices containing the transient, the (non-linear) convective

standard Galerkin and variational multiscale (i.e., SUPG, cross- and Reynolds-stress), and viscous term on the left-hand side.
The right-hand-side terms are evaluated at n + af and constitute the vector fnþaf

E . As indicated, the convective term of the en-
ergy-conservation equation depends on the velocity solution at n + af, which is obtained as a result of the momentum–con-
servation equation. The vectors _Tnþam and Tnþaf contain the degrees of freedom for the temporal derivative and the actual
value of the temperature at the respective points in time subject to
Tnþ1 ¼ Tn þ cDt _Tnþ1 þ 1� cð ÞDt _Tn;

_Tnþam ¼ am
_Tnþ1 þ 1� amð Þ _Tn;

Tnþaf ¼ af T
nþ1 þ 1� afð ÞTn:
According to [44], second-order accuracy is achieved if
c ¼ 1
2
þ am � af ð20Þ
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and unconditional stability if am P af P 1
2. Choosing one parameter, q1, which controls the amount of high-frequency dis-

sipation, all other parameters are defined via
am ¼
1
2

3� q1
1þ q1

� �
; af ¼

1
1þ q1
and (20). Our choice in this study, which is the one also suggested in [44] and used in our previous studies, is q1 = 1/2, result-
ing in am = 5/6, af = 2/3 and c = 2/3.

The coupled system of energy-conservation equation, on the one hand, and mass-/momentum–conservation equation, on
the other hand, is solved iteratively. At the beginning of each time step, it is first solved for the energy-conservation equation
and then for the mass-/momentum–conservation equation, with a potentially required solution of the equation for the ther-
modynamic pressure (18) in between. Algebraic Eq. (17) are evaluated at the Gaussian integration points when necessary.
Depending on the prescribed number of iterations or on whether a prescribed tolerance criterion has not yet been achieved,
further (outer) iterations may be performed; further (inner) iterations of the sub-problems are not performed. At the end of
each time step, it is finally solved for the energy-conservation equation another time, as this procedure already turned out
instrumental in better maintaining conservation in [14]. It is accounted for the non-linearity of the coupled system by using
a Picard (or fixed-point-like) iteration scheme based on an incremental formulation of both matrix systems.

Hence, in terms of the energy-conservation equation, it is iteratively solved for increments DTn+1,i+1 = Tn+1,i+1 � Tn+1,i in
each iteration step i + 1, where i P 0. To start the iteration in each time step, the same-velocity predictor proposed in
[44] is adopted for mass and momentum conservation. The analogue, that is, a same-temperature predictor is used for
the energy-conservation equation: Tn+1 ,0 = Tn and _Tnþ1;0 ¼ ððc� 1Þ=cÞ _Tn. The iteration for the increments operates on the
residual vector Ri

E ¼M _Tnþam ;i þ ðCnþaf ;i þ DÞTnþaf ;i � fnþaf ;i
E . To obtain the respective matrices as approximations of the consis-

tent tangent matrices, partial derivatives as
@ _Tnþam

@Tnþ1 ¼
@ _Tnþam

@ _Tnþ1

@ _Tnþ1

@Tnþ1 ¼
am

cDt
;

@Tnþaf

@Tnþ1 ¼ af ;
are taken, yielding the formulation for the increments DTn+1,i+1:
Mþ af
cDt
a m

Cnþaf ;i þ Cnþaf ;i
VM þ D

� 	� �
DTnþ1;iþ1 ¼ � cDt

am
Ri

E:
5. Algebraic variational multiscale–multigrid method

For introducing small-scale subgrid-viscosity and subgrid-diffusivity terms, the resolved part of the velocity and the tem-
perature is further decomposed into a large resolved and a small resolved part, while keeping the unresolved part as in (12):
u ¼ u3h þ duh|fflfflfflfflfflffl{zfflfflfflfflfflffl}
uh

þû; T ¼ T3h þ dTh|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Th

þbT :

The space of large resolved velocity scales is identified by a grid of characteristic element length 3h, whereas the full reso-
lution limit is h. The actual implementation proposed in the present study performs this separation in a purely algebraic way
without need for generating additional grid levels besides the basic one, though. The procedure of further decomposing the
equation governing the resolved scales into equations governing large and small resolved scales, respectively, is not de-
scribed here. The reader is referred to our earlier publications such as [40,3,32,45] for elaboration.

5.1. Small-scale subgrid viscosity and diffusivity

The small-scale subgrid-viscosity term is based on the physical reasoning that energy transport in turbulent flow mainly
occurs between scales of similar size. The present model should particularly account for the effect of unresolved scales on the
small resolved scales. The subgrid viscosity, ldh

T , is assumed to only depend on the small resolved scales. It is defined by a
modified (constant-coefficient) Smagorinsky model [46] as
ldh
T ¼ qhðCShÞ2 eðduhÞ

�� ��;

with CS denoting the Smagorinsky constant and jeðduhÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eðduhÞ : eðduhÞ

p
the norm of the rate-of-deformation tensor

based on the small-scale velocity. As for the turbulent incompressible flow examples in [32,45], the Smagorinsky constant
CS is chosen to be 0.1, that is, Deardorff’s [47] original proposal for turbulent (incompressible) channel flow. No parameter
tuning is performed to keep the modeling as simple as possible. A small-scale subgrid-diffusivity term in analogy to the
respective ‘‘all-scale” term used, e.g., in [17] is given as
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k
cp

� �dh

T

¼ ldh
T

PrT
;

where PrT denotes the turbulent Prandtl number, for which a constant value PrT = 0.9 will be assumed for all numerical test
cases below. This value is based on numerical evidence in [48,14] for turbulent variable-density flow in a channel configu-
ration. However, the same value will also be used for the Rayleigh–Taylor instability and turbulent flow over a backward-
facing step with heating, following the same rationale as for the Smagorinsky constant above, that is, the avoidance of
any parameter tuning.

With the aid of the small-scale modeling terms, the terms accounting for the unresolved scales in the convective part in
Eqs. (15) and (16) may be replaced to obtain
vh;qh @uh
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The small-scale modeling terms are represented by the first term in the second line of both equations. It is noted that an
artificial small-scale subgrid-diffusivity term of different type (i.e., with an artificial kinematic subgrid diffusivity jart = Ch,
where C is a (bounded) parameter with dimension of a velocity) was proposed in [49] for stabilizing FE formulations.

5.2. Scale separation by plain aggregation algebraic multigrid

Plain aggregation algebraic multigrid (PA-AMG) is used for generating prolongation and restriction (i.e., level-transfer)
operator matrices based on algebraic principles. According to this, a prolongation operator matrix Ph

3h is generated, see
[31,32] for elaboration. Originally, PA-AMG was developed in the framework of smoothed aggregation multigrid (SA-
AMG) solvers, which were introduced in [50]. The restriction operator matrix R3h

h is chosen to be the transpose of the pro-
longation operator matrix:
R3h
h ¼ Ph

3h

� 	T
and it holds that R3h
h Ph

3h ¼ I. A scale-separating operator matrix is defined as S3h
h ¼ Ph

3hR3h
h , in analogy to the scale-separating

operator in [40].
The matrix containing the small-scale subgrid-diffusivity term, Dss, is added to the incremental matrix system as

follows:
Mþ af
cDt
am

Cnþaf ;i þ Dþ bDss I� S3h
h

h i� 	� �
DTnþ1;iþ1 ¼ �

cDt
am

Ri
E þ Dss I� S3h

h

h i
Tnþaf ;i

� 	
; ð23Þ
where the parameter b may be chosen to be either zero or one. Note that matrix Dss is only added to the small resolved scales
via the scale-separating operator matrix S3h

h . A similar procedure is applied to the matrix system resulting from mass and
momentum conservation using the matrix containing the small-scale subgrid-viscosity term. The reader is referred to
[32,45] for elaboration and the depiction of the final matrix system in the context of incompressible flow, which only mar-
ginally changes in the present context.

Parameter b allows for applying a Picard (or fixed-point-like) iteration scheme to the small-scale modeling term (b = 1), as
used for all other terms, but also for employing a computationally much more efficient fixed-point iteration scheme (b = 0).
For b = 0, only a small-scale temperature vector dTnþaf ;i ¼ ½I� S3h

h �T
nþaf ;i needs to be calculated and may then be used within

the usual assembly process of the right-hand side of (23) without notable additional computing effort. Furthermore, a more
densely populated matrix due to the addition of Dss½I� S3h

h � to the left-hand side with respect to all other matrices is circum-
vented; such a higher population density usually poses an additional challenge for the solver. Due to these reasons, b = 0 is
chosen in the numerical examples below.

Remark 5.1. The particular way of implementing the scale separation, Dss½I� S3h
h �, is a so-called ‘‘one-sided” scale

separation, in contrast to the ‘‘two-sided” version ½I� S3h
h �

TDss½I� S3h
h �. As shown in [32], the one-sided version is

computationally more efficient. In case of a projective scale separation, as provided by using PA-AMG scale-separating
operators, one- and two-sided scale separation are expected to be equivalent. This was confirmed by means of a Fourier
analysis in [45].



6054 V. Gravemeier, W.A. Wall / Journal of Computational Physics 229 (2010) 6047–6070
6. Numerical examples

The first numerical example, a Rayleigh–Taylor instability, is investigated for a mixture-fraction formulation as given in (6)–
(8). The more elaborately presented temperature-based formulation is used for the other two numerical examples, that is, tur-
bulent flow in a channel with heated and cooled wall and turbulent flow over a backward-facing step with heating. All discret-
izations used in the following numerical examples employ (bi-/tri-) linearly interpolated elements. For solving the linear
systems of equations arising at the end of the respective discretization processes, an AMG-preconditioned GMRES solver is
applied.

6.1. Overview on investigated methodical combinations and results

There are basically three alternatives for accounting for the effect of the subgrid scales related to the convective terms in
momentum- and energy-conservation equations:

� only the SUPG term (first term in the second line of (15) and (16), abbreviation: ‘‘SUP”),
� SUPG, cross- and Reynolds-stress terms (all terms in the second line of (15) and (16), abbreviation: ‘‘SCR”), or
� the small-scale subgrid-viscosity and -diffusivity term, respectively, via AVM3 (first term in the second line of (21) and

(22), abbreviation: ‘‘AVM”).

The following six methodical combinations, where the first (three-letter) part of the six-letter abbreviation is related to
the method applied to momentum and the second part to energy conservation, represent reasonable ones and were inves-
tigated for the numerical examples:

� SUPSUP, SCRSUP, SCRSCR, AVMAVM, AVMSUP, AVMSCR.

Furthermore, it was also considered adding all terms (abbreviation: ‘‘ALL”) either only for momentum or both for momen-
tum and energy conservation:

� ALLSUP, ALLSCR, ALLALL.

Finally, the combination of small-scale subgrid-viscosity and SUPG term (abbreviation: ‘‘AVS”) for the momentum equa-
tion was taken into account:

� AVSSUP,

resulting in an overall number of 10 methodical combinations. PSPG and grad-div term, which are not related to the convec-
tive term, are always included.

In order to keep the number of presented results within reasonable bounds in the following, some important general re-
sults with respect to stability and robustness of the methodical combinations are already reported here in summary. All
methodical combinations were sequentially tested for the three numerical examples according to the order given below,
which elevates the challenges the methods are subjected to example by example. First of all, it is stated that none of the
methodical combinations used for the momentum–conservation equation exhibited any indications for potential instabili-
ties or lack of robustness. Second, however, the use of the small-scale subgrid-diffusivity term for the energy-conservation
equation was identified to provoke instabilities already for turbulent channel flow with heated and cooled wall and later also
for turbulent flow over a backward-facing step with heating. Finally, the addition of cross- and Reynolds-stress terms for the
energy-conservation equation caused instabilities for turbulent flow over a backward-facing step with heating. Closer inves-
tigations specified their initial occurence within the lower-wall region where substantial temperature variations prevail, as
will be shown below. Furthermore, it appeared that rather the Reynolds-stress term, which incorporates both the residual of
the momentum- and of the energy-conservation equation (see last term in second line of (16)), than the cross-stress term
was responsible for the instabilities.

As a result, it is focused on an SUPG method for the numerical approximation of the energy-conservation equation, which
turned out to be the most robust approach for this, and thus, four of the aforementioned methodical combinations: three
versions of the proposed AVM3, that is, AVMSUP, AVSSUP, and ALLSUP, are preferably compared to the residual-based meth-
od SCRSUP, which takes also into account cross- and Reynolds-stress terms for the momentum–conservation equation as
proposed in [29]. The addition of cross- and Reynolds-stress terms and/or a small-scale subgrid-diffusivity term for the en-
ergy-conservation equation did not provide notably superior results in all stable simulations either.

6.2. Rayleigh–Taylor instability

In the first numerical example, the basic ability of the respective methodical combinations to accurately simulate vari-
able-density flows with high density ratios is investigated for the case of a two-dimensional Rayleigh–Taylor instability
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problem. The set-up is analogous to the one in [16]. The problem domain is X = [�L1,L1] � [�L2,L2] with L1 = L2 = 0.5. Two
miscible fluids, that is, a heavy fluid with density qH = 1.0 above a light fluid with density qL = 0.1, are initially separated
by an interface located at
Fig. 1.
distribu
color lo
article.)
xint
2 ðx1Þ ¼ �a

X7

k¼1

cosðxkpxÞ
with wave amplitude a = 0.001 and wave numbers xk = 4, 14, 23, 28, 33, 42, 51 and 59 as proposed in [51]. Furthermore,
initial values are a zero velocity field and a mixture-fraction distribution as
Zðx2; x1Þ ¼
1
2

1þ tanh
xint

2 ðx1Þ � x2

2d

� �� �
;

where the thickness of the interface is d = 0.002.
Periodic boundary conditions are assumed at the vertical boundaries. No-slip boundary conditions and mixture fractions

Z = 1 and Z = 0 are prescribed at the lower and upper horizontal boundary, respectively. Both fluids are assumed to have the
same kinematic viscosity m = l/q = 0.001 and the same kinematic diffusivity DZ = 0.0005. A gravity acceleration g = 9.0 is pre-
scribed, resulting in a Reynolds number Re ¼

ffiffiffiffiffiffiffi
gL2

p
L1=m ¼ 3000. Four different spatial discretizations with nel = 64, 128, 256

and 512 finite elements in both spatial directions are employed. As in [16], the solution using 512 � 512 elements is assumed
to provide a reference solution for the solutions obtained on the coarser discretizations. A constant time-step length
Dt = 0.001 is applied to all spatial resolutions. The simulations are advanced until tend = 0.75 to obtain the following data.
An impression of the solution is provided in Fig. 1, exemplarily depicting the velocity distribution along with velocity vectors
as well as the mixture-fraction distribution along with contours obtained via AVMSUP on the finest discretization.

Fig. 2 depicts the mixture-fraction contours obtained for various discretizations using AVMSUP. Density profiles at
x2 = 0.20 for various discretizations and methods are evaluated in Fig. 3. The contour plots reveal that a discretization using
64 � 64 elements is not sufficient for resolving the mixture-fraction distribution; hence, it is not included in the density pro-
files depicted in Fig. 3 (left graph). Using 128 � 128 elements, both contours and density profile approach the reference con-
tours and profile obtained with 512 � 512 elements. However, there are still differences, particularly observable for the
density profiles in form of reversed peak locations. Notable convergence to the reference contours and profile is observed
for 256 � 256 elements. As also shown, the present profile obtained for 512 � 512 elements is very close to the one obtained
in [16] for a sixth-order finite difference formulation on a 128 � 128 grid. The convergence of the mean values of mixture
fraction in X is quantified in Table 1.

As the right graph in Fig. 3 indicates, there is not any notable difference between the various methods considered on a
256 � 256 discretization. A quantification via mean values of mixture fraction is provided in Table 2. AVMSUP predicts a
mean value marginally closer to the reference value on a discretization with 512 � 512 than the other methods. Such very
limited differences are to be expected, since there are no ‘‘real” turbulence effects in this example. Thus, we do not expect
substantial benefits from including the small-scale subgrid-viscosity term. Vice versa, however, it is demonstrated that the
inclusion of this small-scale term does not degrade the results for such a non-turbulent problem configuration with high
density ratio. This is in contrast to standard subgrid-viscosity models such as the (all-scale) Smagorinsky model, which
are known to be often over-dissipative in laminar and transitional situations.

6.3. Turbulent channel flow with heated and cooled wall

Turbulent channel flow at Reynolds number Res ¼ qusdc
l ¼ 180 and (molecular) Prandtl number Pr = 0.71 with a heated

wall at temperature TH and a cooled wall at temperature TC is studied. This Reynolds number appears to represent the case
Rayleigh–Taylor instability problem at tend = 0.75 using AVMSUP on 512 � 512 elements, left: velocity vectors on colored velocity magnitude
tion, middle: colored mixture-fraction distribution, right: colored mixture-fraction contours (red color indicates high velocity/mixture fraction, blue
w velocity/mixture fraction). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this



Fig. 2. Mixture-fraction contours for Rayleigh–Taylor instability problem at tend = 0.75 on various discretizations using AVMSUP, from left to right and top
to bottom: 64 � 64, 128 � 128, 256 � 256, 512 � 512 elements.
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Fig. 3. Density profiles at x2 = 0.20 for Rayleigh–Taylor instability problem at tend = 0.75, left: AVMSUP on various discretizations, right: various methods on
discretization with 256 � 256 elements.

Table 1
Mean values of mixture fraction in X for Rayleigh–Taylor instability problem at tend = 0.75 on various discretizations using AVMSUP.

Z

64 � 64 0.3978
128 � 128 0.3721
256 � 256 0.3651
512 � 512 0.3637
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Table 2
Mean values of mixture fraction in X for Rayleigh–Taylor instability problem at tend = 0.75 using 256 � 256 elements and various methods.

Z

AVMSUP 0.3651
AVSSUP 0.3652
ALLSUP 0.3653
SCRSUP 0.3653
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almost exclusively studied in the context of turbulent low-Mach-number flow. DNS data for this Reynolds number and var-
ious temperature ratios TH/TC are provided in [52,53], and LES were reported, e.g., in [11,14]. Here, temperature ratios TH/TC =
1.01 and TH/TC = 2.00 are investigated. For these two cases, various DNS results are given in [52,53], particularly in [52].
Those data are marked by ‘‘DNS N98” and ‘‘DNS N00”, respectively, when used in the following. Furthermore, DNS data
which were used in [14] for comparison and indicated therein to originate from [54] are marked by ‘‘DNS DR04”. Choosing
the lower temperature ratio also offers the opportunity to compare the respective velocity results to the well-established
incompressible DNS data in [55], denoted by ‘‘DNS MKM99” below, since this case is very close to the incompressible (iso-
thermal) case due to the very mild temperature ratio.

The channel dimensions are chosen to be L1 � L2 � L3 ¼ 2pdc � dc � 4
3 pd c. A parabolic velocity profile in x1-direction per-

turbed by random velocity fluctuations of amplitude up to 30% of the streamwise bulk mean velocity in all spatial directions
represents the initial condition u0 for the velocity field. As usual in the aforementioned DNS and LES studies of this case,
scaled initial temperature and density fields T0 = q0 = 1.0 are prescribed, which also represent the respective reference val-
ues, and a gas constant R = 1.0 is assumed. No-slip boundary conditions are applied at the upper and lower wall. Within sev-
eral initial time steps, the lower wall is cooled down and the upper wall heated up such that the target temperature ratios are
achieved. In the homogeneous x1 and x3-direction, periodic boundary conditions for velocity and temperature are applied. As
driving mechanism for the flow, a body force is imposed in form of a driving pressure gradient in the streamwise x1-direc-
tion. A scaled Sutherland law as proposed in [56] and used in [52,53] is employed, where Tref = 1.0 and S = 0.368. The specific
heat capacity at constant pressure is assumed to be cp = 1004.5.

A constant time-step length Dt = 0.004 is applied, that is, expressed in wall units, Dtþ ¼ Dtqu2
s

l ¼ 0:72. 5000 time steps are
performed to allow the flow to develop, and the statistics are collected during another 5000 time steps. During the statistical
period, two Picard iterations within each time step are performed. Three different spatial discretizations with nel = 32, 48 and
64 finite elements in all spatial directions are employed. The distribution of finite elements in wall-normal x2-direction obeys
a hyperbolic function refining towards the walls, that is, the location xi

2 of each grid node i, where i = 0, . . . ,nel, in wall-normal
direction is given as
xi
2 ¼

tanh 2:1 2i
ne l
� 1

� 	� 	
tanhð2:1Þ :
This (symmetric) node distribution between lower and upper wall is maintained for both cases, and not specificially (unsym-
metrically) adapted for the case with higher temperature ratio as, e.g., in [52,14]. In this context, it is noted that the DNS
MKM99 data were recently verified in [57] using (tri-) linearly interpolated (and stabilized) finite elements. With 129 ele-
ments hyperbolically distributed in wall-normal direction, results already very close to the DNS MKM99 data were achieved
at the present Reynolds number in that study. Hence, further refinement of the discretization with 64 elements by a factor of
two in all spatial directions would probably bring the results very close to the DNS data for the lower temperature ratio, such
that any notable differences between the methods would not be visible. As will be shown below, for the higher temperature
ratio, the picture is different.

As usual, results are averaged in time within the statistical period and in space over the two homogeneous spatial direc-
tions. Velocity and temperature results marked by a superscript ‘‘+” in the following depictions are scaled by the velocity
us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sW=qW

p
or the temperature Ts = qW/(qW cp us), respectively, where sW, qW and qW ¼ krTh

W denote the wall-shear
stress, density and heat flux at the (lower or upper) wall, respectively. The results are depicted against the wall-normal coor-
dinate xþ2 ¼

x2qWus
lW

in non-dimensional wall units.
Fig. 4 depicts mean streamwise velocity and mean temperature results for TH/TC = 1.01, comparing them to respective

DNS data. The temperature profiles are also presented against the Kader law, Pr � xþ2 , which is usually assumed to be valid
in the vicinity of the walls. A refinement study for all three discretizations is shown, exemplarily using the residual-based
method SCRSUP and the AVM3-based method AVMSUP. For all discretizations, it is stated that almost all of the results ob-
tained with AVMSUP are closer to the DNS data than the ones obtained with SCRSUP. Using the finest discretization, the tem-
perature results yielded by AVMSUP excellently match the reference DNS profiles and the Kader law. Furthermore, it is
particularly notable that the profiles obtained with AVMSUP on the medium discretization already achieve the accuracy
of the profiles obtained with SCRSUP on the finest discretization for all cases depicted in Fig. 4.

The same may be observed for second-order velocity and temperature results such as root-mean-square values of stream-
wise velocity and temperature and correlations of streamwise velocity and temperature fluctuations depicted in Figs. 5 and
6, respectively. For the correlations of streamwise velocity and temperature fluctuations in the upper half of the channel, no
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Fig. 4. Turbulent channel flow at temperature ratio TH/TC = 1.01 using AVMSUP and SCRSUP, top: mean streamwise velocity, bottom: mean temperature
(left: lower channel half, right: upper channel half).
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reference DNS data appear to be available in the literature; the trend observed for the lower half is mirrored to the upper
half, though.

In Fig. 7, it is investigated whether beneficial effects can be expected when adding both the residual-based and the AVM3-
based modeling terms by comparing AVMSUP and ALLSUP for mean streamwise velocity and mean temperature results.
Such a combined modeling approach was recently suggested in [58] based on a spectral analysis. As can be immediately ob-
served, this is not the case. Further adding the residual-based modeling terms notably deteriorates the results. Cross-com-
paring Figs. 7 and 4 suggests that the results obtained with ALLSUP appear to be of comparable accuracy to the ones obtained
with SCRSUP. Similar observations can be made for second-order velocity and temperature results such as root-mean-square
values of streamwise velocity and temperature and correlations of streamwise velocity and temperature fluctuations, which
are not explicitly depicted here. A similar picture is also obtained when only adding the SUPG term to the AVM3-based mod-
eling terms (i.e., AVSSUP), which is shown in Fig. 8.

Fig. 9 illustrates mean streamwise velocity and mean temperature results for the higher temperature ratio TH/TC = 2.00,
comparing them to DNS data and the Kader law, respectively. Similar to the case with the lower temperature ratio, for all
discretizations, the results predicted by AVMSUP are closer to the DNS data than the ones predicted by SCRSUP, with the
only exception being the mean temperature in the lower channel half on the coarsest discretization towards the channel
center. The DNS data in the upper channel half show a different behaviour towards the channel center than the converging
present results. Since those data are the only reference data we are aware of in this context and the Kader law is not valid
outside of the vicinity of the wall, we are not able to fully confirm these particular results.

Root-mean-square values of streamwise velocity and temperature and correlations of streamwise velocity and temper-
ature fluctuations are shown in Figs. 10 and 11, respectively. Again for almost all profiles, the predictions by AVMSUP are
closer to the reference DNS data than the ones by SCRSUP. However, it is also noted, on the one hand, that the (rather sen-
sitive) root-mean-square temperature profiles do not follow the expected stringent convergence trend in contrast to all other
values, and on the other hand, that, particularly in the lower channel half, all profiles substantially deviate from the available
DNS data. A probable reason for the latter discrepancy (and also the smaller discrepancy for root-mean-square velocity pro-
files in the lower channel half) may be the aforementioned fact that in [52], where the DNS N98 data originate from, an
unsymmetric discretization was used for TH/TC = 2.00, which was more refined towards the bottom wall. For the correlations
of streamwise velocity and temperature fluctuations, no reference DNS data appear to be available in the literature; similar
trends as in the case with the lower temperature ratio are clearly observable, though. The comparison of ALLSUP and AVS-
SUP, respectively, to AVMSUP for TH/TC = 2.00, which are depicted in Figs. 12 and 13 appears to lead to similar conclusions
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Fig. 5. Turbulent channel flow at temperature ratio TH/TC = 1.01 using AVMSUP and SCRSUP, top: root-mean-square streamwise velocity, bottom: root-
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0.0

5.0

10.0

15.0

150.0100.050.00.0 150.0100.050.00.0

SCRSUP-32

SCRSUP-48

SCRSUP-64

AVMSUP-32

AVMSUP-48

AVMSUP-64

DNS DR04

<u'T'>+

x2
+

-10.0

-15.0

-5.0

0.0

SCRSUP-32

SCRSUP-48

SCRSUP-64

AVMSUP-32

AVMSUP-48

AVMSUP-64

<u'T'>+

x2
+

Fig. 6. Streamwise velocity-temperature fluctuations for turbulent channel flow at temperature ratio TH/TC = 1.01 using AVMSUP and SCRSUP, left: lower
channel half, right: upper channel half.

V. Gravemeier, W.A. Wall / Journal of Computational Physics 229 (2010) 6047–6070 6059
with respect to potential beneficial effects when including both residual-based and AVM3-based modeling terms as in the
case with the lower temperature ratio, that is, such a strategy appears to be rather detrimental.

Finally, the dissipation introduced by various terms is analyzed analogously to the investigation in [59]. The dissipation
due to the small-scale subgrid-viscosity term is given as
�ss ¼ 2ldh
T eðduhÞeðduhÞ: ð24Þ
Measures for the dissipation due to SUPG and cross-stress terms similar to the ones in [59] in the form
�SUPG ¼ qhuhsMRh
Me uh
� �

; ð25Þ
�cross ¼ qhsMRh

Muhe uh
� �

; ð26Þ
respectively, are defined, which obviously yield the same value according to these definitions. When comparing the present
results to the ones in [59], it must be taken into account that �SUPG was defined therein to contain the dissipation due to both
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Fig. 7. Turbulent channel flow at temperature ratio TH/TC = 1.01 using AVMSUP and ALLSUP, top: mean streamwise velocity, bottom: mean temperature
(left: lower channel half, right: upper channel half).
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SUPG and cross-stress terms, that is, the sum of the presently defined values. Finally, an analogous measure for the dissipa-
tion due to the Reynolds-stress term is defined:
�Rey ¼ �qhsMRh
Ms MRh

MeðuhÞ: ð27Þ
For this dissipation evaluation, it is focused on the temperature ratio TH/TC = 1.01, since for this case, it is possible to compare
the results to the results in [59], which were obtained for turbulent incompressible flow in a channel.

The dissipation due to the small-scale subgrid-viscosity term using ALLSUP, AVSSUP and AVMSUP on a discretization with
32 finite elements in all spatial directions is depicted in non-dimensionalized form in the left part of Fig. 14. It is observed
that the introduction of dissipation is particularly pronounced close to the channel walls and almost zero in most of the inner
channel region. The differences between the respective methods appear minor. In a preceding study, [40], the importance of
introducing a substantial amount of subgrid viscosity to the smaller resolved scales particularly in the buffer-layer region of
the channel for obtaining high-quality results was already pointed out, while the subgrid viscosity introduced in other parts
of the channel appeared to be of minor relevance. The present investigation underlines that, when using the AVM3, subgrid
viscosity is indeed added to the smaller resolved scales predominantly in the vicinity of the channel walls. The distribution of
dissipation due to the present small-scale subgrid viscosity in wall-normal direction is very similar to the respective distri-
bution due to the (all-scale) dynamic-model subgrid viscosity analyzed in [59]. However, the present peak values are more
than twice as large. At this point, it has to be re-emphasized that the present higher amount of subgrid viscosity is only ap-
plied to a fraction of the resolved scales, and the larger of the resolved scales remain without any (direct) addition of subgrid
viscosity.

The distribution of the dissipation due to the SUPG and cross-stress term, respectively, in wall-normal direction (right
part of Fig. 14) is also very similar to the respective ones depicted in [59]: this dissipation still exhibits values notably larger
than zero in the inner channel region, and the peak locations are further away from the wall. For the three methods inves-
tigated, SUPSUP provides the highest and ALLSUP the lowest peak values, with SCRSUP in between, as expected. On average,
the present peak values appear somewhat smaller than the ones in [59]. However, in [59], the stabilization parameter was
variegated within certain bounds. As can be observed, the dissipation due to the Reynolds-stress term is much smaller com-
pared to the dissipation due to the SUPG and cross-stress term; in fact, it turned out to be about two orders of magnitude
smaller under the given circumstances. Reynolds-stress terms were not considered in [59]. Comparing the peak dissipation
values due to the small-scale subgrid-viscosity term in the left part to the one due to the SUPG and cross-stress term in the
right part of Fig. 14, it is stated that it is about two orders of magnitude larger than the latter.
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Fig. 8. Turbulent channel flow at temperature ratio TH/TC = 1.01 using AVMSUP and AVSSUP, top: mean streamwise velocity, bottom: mean temperature
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6.4. Turbulent flow over a backward-facing step with heating

As the last and most challenging numerical test case, turbulent flow over a backward-facing step with heating is consid-
ered. The Reynolds number based on the step height, which is h = 0.041 m, and the mean inflow centerline velocity u1c is
5580. The expansion ratio, that is, the ratio of the channel height downstream and upstream of the step, is 1.5, and a wall
heat flux of qW = 2000 W/m2 is prescribed at the bottom wall behind the step. The geometry of the problem domain is de-
picted in Fig. 15. The problem configuration is similar to the one in [13], which is the only LES of variable-density flow at low
Mach number in such a configuration so far, to the best of the authors’ knowledge. Given the same expansion ratio, the Rey-
nolds number in [13] was 5540, and thus almost identical to the present one. Further wall heat fluxes besides the one used
here were investigated in [13]. LES data from [13] are denoted by ‘‘LES AP02” when used below.

A comprehensive experimental study of a backward-facing step with heating was conducted in [60], though at a higher
Reynolds number of 28,000 and with an expansion ratio of 1.25. LES of the present problem configuration but with substan-
tially lower wall heat fluxes have been performed over the last couple of years in [61–63]. The low heating allows for solving
the problem based on the incompressible formulation of the Navier–Stokes equations with the temperature coupled as a
passive-scalar equation. Hence, variable-density effects were not taken into account in those studies. For instance, a wall
heat flux of qW = 270 W/m2 was prescribed in [62,63], restricting the maximum overheat to approximately 15 K. As will
be shown below, a maximum overheating of more than 400 K emerges for the present wall heat flux. Considerably more
investigations of the backward-facing step without heating have been published to date. A DNS study of turbulent incom-
pressible flow at a Reynolds number of 5100 was provided in [64]. That data, which was obtained at a Reynolds number rel-
atively close to the present one, will also be used below, marked by ‘‘DNS LMK97”. Various LES of turbulent incompressible
flow within such a problem domain may also be found in the literature, an early one, for instance, in [65].

The simulations are started from an initially prescribed zero velocity field. The constant initial temperature in the prob-
lem domain is T0 = 293 K, which also represents the reference temperature Tref. The thermodynamic pressure, which re-
mains constant during the simulation due to the open outflow boundary, is pthe = 100,405 J/m3. With the gas constant
R = 287.0 J/(kg K) and T0, the initial density amounts to q0 = qref = 1.194 kg/m3. The viscosity of air at the reference temper-
ature is lref = 18.23�106 kg/(m s). The Prandtl number is assumed to be Pr = 0.71 and the specific heat capacity at constant
pressure to be cp = 1006.0 J/(kg K). No-slip boundary conditions for the velocity are prescribed on all upper and lower (hor-
izontal) walls as well as the (vertical) step wall. Periodic boundary conditions are assumed for both velocity and temperature
in spanwise x3-direction. At all other walls except for the bottom wall behind the step and the inflow boundary, adiabatic



0.0

5.0

10.0

15.0

20.0

25.0

30.0
DNS N00

SCRSUP-32

SCRSUP-48

SCRSUP-64

AVMSUP-32

AVMSUP-48

AVMSUP-64

<u1
+>

0.0

5.0

10.0

15.0

20.0
DNS N00

SCRSUP-32

SCRSUP-48

SCRSUP-64

AVMSUP-32

AVMSUP-48

AVMSUP-64

<u1
+>

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1000.0100.010.01.0

Kader law

DNS N98

SCRSUP-32

SCRSUP-48

SCRSUP-64

AVMSUP-32

AVMSUP-48

AVMSUP-64

<T+>

x2
+ 1000.0100.010.01.0 x2

+

1000.0100.010.01.0 x2
+1000.0100.010.01.0 x2

+

0.0

5.0

10.0

15.0

20.0
Kader law

DNS N98

SCRSUP-32

SCRSUP-48

SCRSUP-64

AVMSUP-32

AVMSUP-48

AVMSUP-64

<T+>

Fig. 9. Turbulent channel flow at temperature ratio TH/TC = 2.00 using AVMSUP and SCRSUP, top: mean streamwise velocity, bottom: mean temperature
(left: lower channel half, right: upper channel half).
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boundary conditions are prescribed for the temperature. At the inflow boundary, Tref is prescribed as a Dirichlet boundary
condition, and at the bottom wall behind the step, the aforementioned wall heat flux qW = 2000 W/m2 is given.

At the outflow boundary, a zero-traction Neumann boundary condition, hu = 0, is assumed. As already used in [45] for
turbulent incompressible flow past a square-section cylinder, a term at the outflow boundary Cout in the form
�ðvh;qhuhfuh � ng�ÞCout

has to be added to the respective FE formulation of the momentum–conservation equation, where
{uh�n}- = uh�n if uh�n < 0 and {uh�n}- = 0 otherwise; see also [41,66]. The analogous term is added here to the FE formulation
of the energy-conservation equation: �ðvh;qhThfuh � ng�ÞCout

. The addition of these two terms ensures that potentially aris-
ing eddies at the outflow boundary are appropriately convected out of the problem domain. Usually, the most challenging
condition for a flow problem such as turbulent flow over a backward-facing step amounts to be the inflow boundary con-
dition for the velocity. Overviews on the generation of such inflow data are provided, e.g., in [67] and recently in [68]. Results
from our preliminary investigations revealed that it appears sufficient for the present case to follow the simplest procedure
addressed in [67,68], that is, to synthetically generate turbulent inflow data by superimposing random fluctuations on the
desired mean velocity profile. The desired mean velocity profile in this context is a boundary-layer velocity profile at
Res = 285. It is superimposed in all spatial directions by random fluctuations with a maximum amplitude of 10% of the
streamwise bulk mean velocity of this boundary-layer velocity profile. The actual mean inflow centerline velocity u1c is
approximately 2.078 for all simulations performed, resulting in the aforementioned Reynolds number of 5580.

A constant time-step length Dt = 0.008 is applied. As for the turbulent channel flow above, 5000 time steps are performed
to allow the flow to develop, and the statistics are collected during another 5000 time steps, during which two Picard iter-
ations within each time step are performed. Non-dimensionalized by the step height and the mean inflow centerline veloc-
ity, a value DtI ¼ Dtu1c

h ¼ 0:04 may be calculated, which is close to D tq = 0.03 used in [13]. As in [13], the spatial discretization
is inspired by the mesh refinement studies in [69]. After all, 48 uniformly distributed elements are used in spanwise x3-direc-
tion. In streamwise x1-direction, 86 elements are employed overall, refined towards the step from the inflow side (18 ele-
ments) with a bias factor 1.07 and from the outflow side (68 elements) with a bias factor 1.045. In wall-normal x2-
direction, 32 elements are arranged above the step and 16 elements below, refined towards both the upper (bias factor
1.27) and the lower (bias factor 1.65) wall as well as the (virtual) horizontal step line (bias factor 1.27 from above and
1.65 from below). Hence, approximately 1 mio. degrees of freedom, that is, hydrodynamic pressure, velocity and tempera-
ture, are solved for overall.

The results presented for this example are obtained with SUPSUP, SCRSUP, AVSSUP and ALLSUP. AVSSUP is used here in
preference to AVMSUP due its notably improved convergence behaviour of the AMG-preconditioned GMRES solver for the
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Fig. 10. Turbulent channel flow at temperature ratio TH/TC = 2.00 using AVMSUP and SCRSUP, top: root-mean-square streamwise velocity, bottom: root-
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present case. In fact, the inclusion of the SUPG term in the solution of the momentum equation appears to be crucial for guar-
anteeing an acceptable convergence of the solver. Furthermore, the SUPSUP case represents the minimum amount of mod-
eling terms with which a stable and acceptably converging solution was enabled for the present case. Results from test
simulations with less modeling terms included indeed confirmed our initial suspicion in this context.

Snapshots of velocity and temperature distributions at the beginning of the statistical period are provided in Fig. 16; the
hot spots at the heated bottom wall in the vicinity of the step wall are clearly observable. Velocity results at various locations
behind the step (for the lower region of the problem domain) are depicted in Fig. 17. Besides the LES data from [13], (iso-
thermal) experimental results from [70] are also included, which were used in [13] as reference results as well. This already
indicates that the velocity results are to be expected close to respective isothermal results. The results in Fig. 17 confirm this
observation. Differences between the three methodical combinations are hardly visible, and the reference results are
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Fig. 12. Turbulent channel flow at temperature ratio TH/TC = 2.00 using AVMSUP and ALLSUP, top: mean streamwise velocity, bottom: mean temperature
(left: lower channel half, right: upper channel half).
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Fig. 16. Snapshots of velocity and temperature distributions at the beginning of the statistical period, left: colored velocity magnitude distribution, right:
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to colour in this figure legend, the reader is referred to the web version of this article.)
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sufficiently well matched. At the first five locations, the present results are even somewhat closer to the experimental results
than the LES AP02 data. Further downstream, the LES AP02 results are very close to the present ones.

Fig. 18 shows the temperature results at various locations after the step, scaled by the reference temperature and only for
the region close to the bottom wall. As can be seen, the temperature values undergo substantial variations within small dis-
tances from the bottom wall. At about 0.02 m above the bottom wall, the reference temperature is almost reached again, but
at the bottom wall, a maximum overheating of about up to 300% of the reference temperature is observed. The LES AP02
results at locations x1 = h and x1 = 3h are notably lower than the present ones and at locations x1 = 5h, x1 = 7h and x1 = 9h,
they closely match. At the first location, x1 = h, there is also a notable difference between the temperatures obtained with
AVSSUP and the ones obtained with SUPSUP, SCRSUP as well as ALLSUP. Since, there are no other reference results in this
context, we would like to oppose our results against the LES AP02. In particular, our suspicion is that the profile yielded
by AVSSUP might be close to the actual temperature distribution. A DNS would probably clarify the actual temperature dis-
tribution in this region.



Fig. 17. Velocity results for backward-facing step, solid lines: AVSSUP, dashed lines: SCRSUP, dotted-dashed lines: ALLSUP, double-dotted-dashed lines:
SUPSUP, squares: LES AP02, triangles: EXP KM95.
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Our slight doubts with respect to the LES AP02 data in this region are based on the results for the skin-friction coefficient
at the bottom wall, among other things. The skin-friction coefficient is defined as follows:
Fig. 18
lines: S
Cf ðx1Þ ¼
sh

W

 �
ðx1Þ

1
2 qref u

2
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; ð28Þ
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: ð29Þ
The profiles for the skin-friction coefficient along the bottom wall are depicted in Fig. 19. As for the velocity results, differ-
ences between the various methodical combinations are minute. Surprisingly, the LES AP02 profile does not go to zero at the
step wall, which is mandatory due to the presence of the (vertical) step wall and the resulting fact that the wall-shear stress
needs to be zero at such a wall. For comparison, the DNS LMK97 data are also included in the diagram, with the profile in-
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deed approaching zero at the step wall, as expected. The actual DNS LMK97 results are not comparable due to the fact that
they originate from an isothermal investigation. Qualitatively, however, notably higher peak values for the skin-friction coef-
ficient in the present case compared to an isothermal case are to be expected due to an increased ratio lW/qW within the
wall-shear stress sW, as observed in Fig. 19. Furthermore, the negative peak is somewhat shifted in downstream direction
compared to the isothermal DNS LMK97.

As for the preceding numerical example, the dissipation introduced by various terms is analyzed using the measures as
given in (24)–(27). The dissipation distributions due to small-scale subgrid-viscosity, SUPG/cross-stress and Reynolds-stress
terms scaled by the respective maximum values are shown in Fig. 20. Two important observations can be made. First, the
most pronounced dissipation values for all terms occur in the region around the (virtual) horizontal step line. For the
small-scale subgrid-viscosity term, further notable peaks are observed in the vicinity of the lower walls. The peaks due to
SUPG/cross-stress and Reynolds-stress dissipation in this area are less pronounced. Second, comparable to the channel,
the maximum dissipation value due to the small-scale subgrid-viscosity term is about two orders of magnitude larger than
the one due to the SUPG/cross-stress term, which is again about two orders of magnitude larger than the one due to the Rey-
nolds-stress term.
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7. Conclusions

An algebraic variational multiscale–multigrid method has been proposed for large-eddy simulation of turbulent variable-
density flow at low Mach number. Scale-separating operators generated by level-transfer operators from plain aggregation
algebraic multigrid methods enable the application of modeling terms to selected scale groups in a purely algebraic way. In
the present context, this application of a modeling term is restricted to the smaller of the resolved problem scales. Following
this purely algebraic strategy for scale separation means that no coarse discretization besides the basic one is required, in
contrast to earlier approaches based on geometric multigrid methods. Plain aggregation algebraic multigrid is chosen in pref-
erence to smoothed aggregation algebraic multigrid because of the projective property inherent in a scale-separating oper-
ator based on the respective level-transfer operators. Among other things, this projective property enables an efficient
implementation of the proposed method, as earlier demonstrated in [32,45].

This method, which was already successfully developed and applied for convection-dominated convection–diffusion
problems in [31] and for large-eddy simulation of turbulent incompressible flow in [32,45], has been developed here for
the considerably more demanding case of large-eddy simulation of turbulent variable-density flow at low Mach number.
Furthermore, residual-based variational multiscale methods as originally proposed for turbulent incompressible flow in
[29] and further evolved for variable-density flow at low-Mach number in [28] have also been subjected to a variety of such
turbulent variable-density flow problems, and its results have been compared to the ones obtained with the algebraic var-
iational multiscale–multigrid method.

Three numerical test cases of increasing complexity have been considered in this study: a Rayleigh–Taylor instability, tur-
bulent channel flow with a heated and a cooled wall, and turbulent flow past a backward-facing step with heating. The first
example, which represents a non-turbulent test problem with high density ratio, was chosen to evaluate the performance of
the methods for such a problem configuration. In particular, it has been demonstrated that the small-scale subgrid-viscosity
term, the essential part of the algebraic variational multiscale–multigrid method, does not deteriorate the results for such a
non-turbulent problem configuration with high density ratio. On the contrary, an admittedly marginal and hardly notable
improvement has been achieved compared to the residual-based method. This is in contrast to standard subgrid-viscosity
models such as the (all-scale) Smagorinsky model with a constant coefficient, which are known to be over-dissipative in lam-
inar and transitional situations, as outlined, e.g., in [4,71]. Hence, both the residual-based variational multiscale method and
the algebraic variational multiscale–multigrid method investigated in this study are basically appropriate for simulations
across all flow ranges, from laminar to turbulent.

In the second numerical example, turbulent channel flow with a heated and a cooled wall, the methods have been thor-
oughly evaluated via a refinement study employing three different meshes for two different temperature ratios. Mean and
various second-order velocity and temperature results have indicated the higher prediction quality achievable when adding
a small-scale subgrid-viscosity term within the algebraic multigrid framework instead of the residual-based terms account-
ing for the subgrid-scale part of the non-linear convective term. For several results, it has even been possible to counterbal-
ance one mesh-refinement level via the addition of the small-scale subgrid-viscosity term. Finally, for turbulent flow past a
backward-facing step with heating, the most complex test problem, similar velocity results have been obtained for both
methods. However, the temperature results predicted by the algebraic variational multiscale–multigrid method have ap-
peared to be closer to probable actual temperature profiles than the ones predicted by the residual-based method. A final
judgement of this issue would require reliable DNS data for this case, though, which are not yet available.

During the course of the numerical evaluations, it has also been detected that the use of the small-scale subgrid-diffusiv-
ity term for the energy-conservation equation may rather jeopardize stability than improve the results. Also, the addition of
cross- and Reynolds-stress terms for the energy-conservation equation eventually caused instabilities for turbulent flow over
a backward-facing step with heating. Closer investigations specified their initial occurence within the lower-wall region
where substantial temperature variations prevail; it seemed that rather the Reynolds- than the cross-stress term was
responsible for the instabilities. For both turbulent channel flow with a heated and a cooled wall and turbulent flow past
a backward-facing step with heating, the dissipation introduced by various subgrid-scale terms has been investigated. It
has turned out for both problem configurations that the maximum dissipation values due to the small-scale subgrid-viscos-
ity term are about two orders of magnitude larger than the ones due to the SUPG/cross-stress term, which are again about
two orders of magnitude larger than the ones due to the Reynolds-stress term.
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